Long-Term Persistence of Functional Thymic Epithelial Progenitor Cells In Vivo under Conditions of Low FOXN1 Expression

نویسندگان

  • Xin Jin
  • Craig S. Nowell
  • Svetlana Ulyanchenko
  • Frances H. Stenhouse
  • C. Clare Blackburn
چکیده

Normal thymus function reflects interactions between developing T-cells and several thymic stroma cell types. Within the stroma, key functions reside in the distinct cortical and medullary thymic epithelial cell (TEC) types. It has been demonstrated that, during organogenesis, all TECs can be derived from a common thymic epithelial progenitor cell (TEPC). The properties of this common progenitor are thus of interest. Differentiation of both cTEC and mTEC depends on the epithelial-specific transcription factor FOXN1, although formation of the common TEPC from which the TEC lineage originates does not require FOXN1. Here, we have used a revertible severely hypomorphic allele of Foxn1, Foxn1R, to test the stability of the common TEPC in vivo. By reactivating Foxn1 expression postnatally in Foxn1R/- mice we demonstrate that functional TEPCs can persist in the thymic rudiment until at least 6 months of age, and retain the potential to give rise to both cortical and medullary thymic epithelial cells (cTECs and mTECs). These data demonstrate that the TEPC-state is remarkably stable in vivo under conditions of low Foxn1 expression, suggesting that manipulation of FOXN1 activity may prove a valuable method for long term maintenance of TEPC in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adult Thymus Contains FoxN1− Epithelial Stem Cells that Are Bipotent for Medullary and Cortical Thymic Epithelial Lineages

Within the thymus, two major thymic epithelial cell (TEC) subsets-cortical and medullary TECs-provide unique structural and functional niches for T cell development and establishment of central tolerance. Both lineages are believed to originate from a common progenitor cell, yet the cellular and molecular identity of these bipotent TEC progenitors/stem cells remains ill defined. Here we identif...

متن کامل

The antigenic determinant that defines thymic nurse cells is expressed by thymic epithelial progenitor cells

Stromal thymic epithelial cells with the multicellular structure unique to thymic nurse cells (TNCs) express the pH91 antigen on their cell surfaces. The multicellular TNC-complexes develop through an intimate association between αβTCR+CD4+CD8+ thymocytes and pH91-expressing cortical epithelial cells. TNCs participate in MHC-restriction and exhibit epithelial cell progenitor characteristics. In...

متن کامل

Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus.

Foxn1 transcription factor is known to be essential for development of the thymic organ. We analyzed whether Foxn1 expression in thymic epithelial cells is necessary for the expression of functional molecules such as Delta-like 4 (Dll4) and CCL25, and whether maintenance of these molecular expressions depends on the Foxn1 transcription factor. We show that almost all thymic epithelial cells in ...

متن کامل

Impaired Thymic Selection and Abnormal Antigen-Specific T Cell Responses in Foxn1Δ/Δ Mutant Mice

BACKGROUND Foxn1(Δ/Δ) mutant mice have a specific defect in thymic development, characterized by a block in TEC differentiation at an intermediate progenitor stage, and blocks in thymocyte development at both the DN1 and DP cell stages, resulting in the production of abnormally functioning T cells that develop from an atypical progenitor population. In the current study, we tested the effects o...

متن کامل

Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells.

The forkhead box n1 (Foxn1) transcription factor is essential for thymic organogenesis during embryonic development; however, a functional role of Foxn1 in the postnatal thymus is less well understood. We developed Foxn1 transgenic mice (Foxn1Tg), in which overexpression of Foxn1 is driven by the human keratin-14 promoter. Expression of the Foxn1 transgene increased the endogenous Foxn1 levels....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014